Aerodynamic Aerosol Classifier

Classify aerosol particles — by aerodynamic diameter — without charging

The AAC is the ideal instrument for generating a truly monodisperse aerosol from a polydisperse source. With no charger or neutralizer, only the desired particle size is selected, without additional peaks from multiple charges. Unhindered by charging, particle transmission efficiency is high across the AAC’s wide size range, limited only by diffusional and impaction losses.

Applications:
- Alternative to DMA
- Produce aerodynamic size distributions when paired with a CPC
- Continuous scanning (speed ramping) mode for faster scans
- Wherever radioactive/X-ray sources are prohibited or inconvenient
- Generate calibration aerosol
- Inhalation and particle deposition studies
- Where charge correction is problematic: metrology, tandem instrumentation etc.
- Measure:
 - Mass-mobility
 - Shape factor
 - Effective density
 …when paired with a DMA / CPMA

Features and benefits:
- Wide particle size range
 25nm to > 5µm aerodynamic diameter
- True monodisperse aerosol output
- High transmission efficiency
- No radioactive or X-ray source required
- No multiple charging complication
- Standalone instrument:
 Easy integration with other devices

AAC scans of an upstream AAC’s monodisperse output

...when paired with a DMA / CPMA
Principle of Operation

The AAC may be thought of as translating the DMA into a rotating frame, where the electrical force on the particles is replaced by a centrifugal force. Particles are carried along the classifier by a sheath of clean air. The rotation of the classifier imparts a centrifugal force onto the particles, opposed by their drag force in air.

Particles which are larger than the selected diameter adhere to the outer wall of the classifier, those smaller than the target size exit with the excess sheath flow, particles at the selected diameter exit through the sample port.

Since the only forces acting on the particles are due to their mass and drag (i.e. aerodynamic diameter), charging is not required and charge state has no effect on classification.

An Alternative to a DMA

The AAC may be used in most applications where a DMA is traditionally used to select aerosol by size. The main advantage over a DMA is that only one peak is produced — no additional particles at larger sizes with higher charge states pass through the AAC.

Conversion between mobility and aerodynamic diameters is automatic and built into the software, both for aerosols of known constant density, and those with a size varying density for which a mass-mobility relationship is known (such as soot).

Because no neutralizer is required, the AAC can be used in places and situations where legislation or practical consideration limits or prohibits the use of radioactive or X-ray sources.

Another advantage over a DMA is the much wider size range of the AAC, from 25nm to >5μm in aerodynamic diameter. As the relationship between aerodynamic and mobility diameters is density dependent, by using dense test aerosols (for example, silver, gold, CsCl), it is possible to reach small (<10nm) mobility equivalent diameters (Symonds 2018).

The resolution of the AAC is determined by the ratio of sheath to sample flow, as for a DMA, and very similar high resolution is achievable with the AAC. Applications where the AAC has already found use as a DMA alternative include filter penetration testing, aerosol charger efficiency testing and CPC calibration.
Aerodynamic Aerosol Classifier

Use When You Need Aerodynamic Diameter

In many areas of aerosol science, Aerodynamic Diameter is the metric of choice, for example in inhalation studies. The AAC allows for the first time selection of aerosol by aerodynamic size over a finite size range. Whilst impactors provide a large particle cut-off, and virtual impactors a small particle cut-off, only the AAC allows selection of particles by aerodynamic diameter over a finite range with selectable, very high, resolution.

Scanning Operation

In addition to monodisperse classification, the AAC can scan its rotational speed to produce a size distribution when paired with a particle counter such as a CPC, while requiring no charge correction. NEW: In addition to the original step scanning mode, there is now a continuous scanning (speed ramping) mode, similar to an SMPS™ in operation. This considerably reduces the scanning time.

Digital connection to a wide range of commercial CPCs is supported (see specifications at end). Data is logged in plain text format to any USB flash drive.

The scanning data inversions are built into the AAC’s software, and include correction for particle losses. Details of step scanning can be found in Johnson et al. (2018), which shows good agreement with the ELPI™, and when converted to mobility diameter, with the SMPS™.

Data is logged in plain text format to any USB flash drive.

Optional Aerosol Flowmeter

A digital flowmeter is available that can be placed inline with the aerosol exit flow, and measures the flow by means of the pressure difference across an orifice plate. This allows the AAC to automatically adjust the sheath flow to maintain a constant resolution, in situations where the sample flow is unknown or variable.

Use in Tandem with other Classifiers

The AAC can be used in tandem with other particle classifiers to yield further information about particle properties. When used with a DMA, information about particle density and shape factor is obtainable (e.g. Tavakoli and Olfert, 2014). When used with a CPMA, information about particle mobility is obtainable.

Easy to Use, Easy to Integrate into Experiments

The AAC is fully standalone and controllable from the built-in touchscreen:

The classifier can be run at constant sheath flow, or at constant size resolution. In the latter case, the sheath flow is automatically adjusted as a function of size.

The instrument may be controlled remotely via a VNC client (screen sharing over Ethernet), the supplied Windows application or automated from your own programs via text commands or the supplied Dynamic Link Library. Remote control is possible over USB, RS232 (serial), or Ethernet. Control via any of three software configurable analogue inputs is also possible. Three software configurable analogue outputs are provided.

Traceable Measurement

The AAC’s principle of operation means that aerodynamic diameter is dependent upon the classifier speed, the sheath flow, the classifier dimensions, air viscosity and mean free path (Cunningham slip correction, C_c). The speed and sheath flows are traceably calibrated at Cambustion with calibration certificates provided. The air viscosity and mean free path is accounted for using pressure and temperature sensors in the sheath flow. The following expression relates the aerodynamic diameter to the physical characteristics of the classifier:

$$\frac{C_c(d_{ae}) \rho_0 d_{ae}^2}{18\mu} = \frac{2Q_{sh}}{\pi \omega^2 (r_i + r_o)^2 L}$$

An optional traceable classifier gauging service is also available to further reduce experimental uncertainties.

Optional Aerosol Flowmeter

A digital flowmeter is available which can be placed inline with the aerosol exit flow, and measures the flow by means of the pressure difference across an orifice plate. This allows the AAC to automatically adjust the sheath flow to maintain a constant resolution, in situations where the sample flow is unknown or variable.
varying. Where the sample flow is fixed and known (e.g. when using a CPC), the flow can simply be entered into the AAC software.

References
(See full list: www.cambustion.com/publications/aac)

- An instrument for the classification of aerosols by particle relaxation time: Theoretical models of the Aerodynamic Aerosol Classifier; F. Tavakoli & J.S. Olfert; Aerosol Science and Technology, 47(8) 916–926 (2013)
- Measuring aerosol size distributions with the aerodynamic aerosol classifier; T.J. Johnson et al.; Aerosol Science and Technology, 52(6) 655–665 (2018)

The Aerodynamic Aerosol Classifier includes technology licensed from the University of Alberta and is protected by the following international patents: US8966958, JP5658244, CA2764522A1, GB2550185B, with other territories pending.

Specifications
For more information, a quotation or to see an animation of the AAC, please visit or contact:

Cambustion
J6 The Paddocks
347 Cherry Hinton Road
Cambridge CB1 8DH
United Kingdom
www.cambustion/aerosol
Tel. +44 1223 210250
N. America: 1-800 416 9304

All specifications subject to review and change without notice

Operating size range
This is dependent upon the resolution \(R_s \) required, and the sample flow used. \(R_s \) is defined as \(D_{ae}/\Delta D_{ae, FWHM} \). The resolution is changed by changing the sheath flow to sample flow ratio, which is taken care of by the AAC software.

Particle size range
(see plot below)

<table>
<thead>
<tr>
<th>25 nm – >5 µm</th>
</tr>
</thead>
</table>

Sample flow range

<table>
<thead>
<tr>
<th>0.3 – 1.5 LPM</th>
</tr>
</thead>
</table>

Sheath flow range

<table>
<thead>
<tr>
<th>2 – 15 LPM</th>
</tr>
</thead>
</table>

Rotational speed

<table>
<thead>
<tr>
<th>200 – 7,000 RPM</th>
</tr>
</thead>
</table>

Ambient conditions

<table>
<thead>
<tr>
<th>10 – 40°C (0 – 95% RH)</th>
</tr>
</thead>
</table>

User Interface

<table>
<thead>
<tr>
<th>Built-in touchscreen</th>
</tr>
</thead>
</table>

PC remote control

<table>
<thead>
<tr>
<th>via Ethernet, USB or RS232</th>
</tr>
</thead>
</table>

CPC communication

<table>
<thead>
<tr>
<th>RS232 or analogue</th>
</tr>
</thead>
</table>

Compatible CPCs

<table>
<thead>
<tr>
<th>Aerosol Devices MAGIC, Airmodus A20, Brechtel 1720, Grimm 54xx, PALAS UF CPC, TSI 30xx, 375x, 377x, 378x</th>
</tr>
</thead>
</table>

Analogue inputs and outputs

<table>
<thead>
<tr>
<th>3 inputs, 3 outputs, 0 – 10 V</th>
</tr>
</thead>
</table>

Electrical supply

<table>
<thead>
<tr>
<th>90–240 VAC, 50/60 Hz, 1kW</th>
</tr>
</thead>
</table>

Dimensions / Weight

<table>
<thead>
<tr>
<th>570 (w) x 520 (d) x 480 (h) mm / ~70 kg</th>
</tr>
</thead>
</table>

All specifications subject to review and change without notice.

Particle Aerodynamic Diameter / nm

Low sample flow = 0.3 lpm

High sample flow = 1.5 lpm