Behaviour of Non- and Multiply-Charged Aerosols in the Centrifugal Particle Mass Analyzer

J.P.R. Symonds, M.G. Rushton, K.St.J. Reavell, C. Lowndes

American Association for Aerosol Research Conference, Orlando, October 2011
Content

- Introduction – why mass?
- The CPMA
 - Principle
 - Defining mass:charge setpoint and resolution
 - Use with PSL downstream of a DMA
- Charge Effects Downstream of a DMA
 - Example: LPG vehicle soot density
- Sampling Aerosol with a Bipolar Equilibrium Charge Distribution
- Use with an electrometer – a suspended mass standard
The need to measure sub-micron nanoparticle mass

- Many legislative metrics are expressed in terms of mass e.g. engine emissions in the U.S., ambient particle standards.
- Combined with size measurement, one can determine:
 - Particle density
 - Particle fractal index and dynamic shape factor \(\Rightarrow \) particle morphology
- Particle “size” for a non spherical particle can be defined in many ways dependent upon measurement technique, \textit{but particle mass is well defined – measurement is independent of morphology and composition}

\[\text{Mass } \equiv 0.52 \, \text{fg} \]
\[\text{Size } \sim 100 \, \text{nm} \]
Centrifugal Particle Mass Analyzer

- Improvement to Aerosol Particle Mass Analyzer (APM) concept (Ehara, 1996)
- Concept by Mark Rushton and Kingsley Reavell (Cambustion) – also known as “Couette CPMA” (2003)
- Developed as a PhD project by Jason Olfert at Cambridge University (2003–2006) – First Prototype
- Cylinders rotate at *slightly* different speeds (inner>outer) ⇒ Creates a velocity gradient (*Couette* flow) ⇒ Vary centrifugal force across radius to match electric force ⇒ Forces balance across radius
- **Particles of correct mass:charge pass through at all entry locations; theoretically 100% transmission.**

Diagram courtesy of J. Olfert

New Version (2012…)

200 l × 120 ø mm classifier with 1 mm gap; 0.05–1000 V; 500–12,000 rpm

Longer classifier ⇒ finer resolution without greater losses (except for diffusion)

Set mass and resolution (FWHM) directly, rather than speed and voltage….
Mass Setpoint and Resolution

- CPMA selected mass:charge is a simple function of the physical parameters of the CPMA, by balancing the forces:

\[
\frac{m}{N_q} = \frac{eV}{r^2 \omega^2 \ln \left(\frac{r_o}{r_i} \right)}
\]

- Unlike say a DMA, setpoint has no dependence on gas properties (e.g. temperature, pressure, viscosity, mean free path) or slip correction.

- Infinite choice of \(\omega, V \) which balance for a given mass:charge — magnitude determines particle drift speed and hence resolution. We use a simplified drift based model:

Net drift velocity = \(E q B - m \omega^2 r B \)
DMA-CPMA System

- PSL particles are nebulised, neutralised (charged) and passed through DMA
- CPMA step scanned – speed and voltage counter-varied to maintain same resolution.
- In the following examples, the CPMA’s resolution is finer than the DMA’s, therefore only a narrow “slice” is measured, so $N_{CPC2} < N_{CPC1}$.

e.g. Thermo 102 nm PSL $d/\Delta d = 8.33$, DMA $d/\Delta d = 20.0$, CPMA $d/\Delta d = 31.0$ ($m/\Delta m = 10.0$)
Example PSL Results

CPMA flow = 1.5 lpm ($R_m = m / \Delta m_{FWHM}$); DMA sheath = 10 lpm, aerosol = 1 lpm

CPMA Mass Scan, 150 nm PSL, $R_m = 5.13$

- Peak (DMA at PSL peak) = 1.86 fg
- CPMA peak = 1.89 fg
- Error = 1.8%

CPMA Mass Scan, 300 nm PSL, $R_m = 10$

- Peak (DMA at PSL peak) = 14.94 fg
- CPMA peak = 14.80 fg
- Error = 0.2%

150 nm PSL, $R_m = 5.13$, CPMA Size Plot (density = 1.05 g/cc)

300 nm PSL, $R_m = 10$, CPMA Size Plot (density = 1.05 g/cc)
Charge Effects – Downstream of DMA

• Strictly necessary to correct for multiple charges from Neutraliser - DMA system.
• e.g.: 100 nm particle
 - +2 particle from DMA (with same electrical mobility) at 152 nm (mass 1.8 fg at unit density)
 - These particles (still with 2+ charges) appear at half the mass of a 152 nm particle in the CPMA scan (2 charges): 0.9 fg
 - observed +2 peak equivalent to 120 nm:

- In theory, relative position of the +1 and +2 peaks gives just enough degrees of freedom to estimate density pre-factor and index for mass:size relationship from just one scan – but not recommended for good accuracy.
Liquefied Petroleum Gas Vehicle (preliminary data)

BMW 5 Series LPG Conversion
Exhaust Ejector Diluted to ~20:1 to reduce water condensation
Low signal (clean engine)

90 nm DMA Cut

Experiment
Fit: Species A ($\rho=1200$): 1+
Fit: Species A ($\rho=1200$): 2+
Fit: Species B ($\rho=3000$): 1+

90 nm DMA Cut on "Unit Density" Size Scale

Experiment
Fit
Raw mobility spectrum

Concentration - DMA Cut / CMA Scan (dN/dlogDp/cc)

Concentration - Overall Mobility Spectrum (dN/dlogDp/cc)

Effective Density (kg/m³)

Dp
%A
%B
A: soot or water?
B: ash? (lube oil)
TBC…
Charge Effects – Bipolar Equilibrium Charge (1)

If used *directly* with a neutraliser (without a DMA) also need to account for *zero* charge state at sufficiently low speeds if used with CPC

PSL → DMA → CPMA → CPC

DMA is there to remove PSL surfactant etc

![Diagram showing charge effects and penetration graph](image)

100 nm PSL re-neutralised after DMA, \(R_m = 2.3 \)

Penetration

- Speed
- Voltage

"centrifuge"

"+0"

"+1"

"+2"

Experiment
Charge Effects – Bipolar Equilibrium Charge (2)

- Charging models size based, hence a mass based model is weakly density dependent
- Inverse problem yet to be tackled
- If an electrometer is used when scanning — don’t detect zero charge particles
 - Still need to correct concentration for their absence, and for the absence of –ve charged particles…
Higher resolution, bigger particles, more charges…

300 nm PSL, Rm = 5.13
CPMA-Electrometer: A Suspended Mass Standard

- System appealing as “suspended mass standard” for instrument calibration
 - electrometer counts “**double** mass:charge” particles **twice** (etc), correcting for charge

\[
m_{\text{total}} = m_{+0} + Mn_{+1} + 2Mn_{+2} + 3Mn_{+3} + \ldots
= m_{+0} + M(n_{+1} + 2n_{+2} + 3n_{+3} + \ldots)
\]

\[
I_{\text{elec}} = Qe(n_{+1} + 2n_{+2} + 3n_{+3} + \ldots)
\]

\[
\therefore m_{\text{total}} = m_{+0} + \frac{MI}{Qe} = m_{+0} + M \times "\text{Indicated N/cc}"
\]

\[
m_{\text{total}} = \text{mass setpoint } \times \text{indicated electrometer concentration} + \text{zero charge correction}
\]

Not true for DMA-Electrometer system – doubling ‘drag’ does not double concentration!

Only necessary correction is for \(m_{+0}\) (-ve particles don’t pass)

... or ...

minimise \(m_{+0}\):
- remove small particles
- use a unipolar corona charger. Also raises detection limit.
Conclusions

• CPMA useful calibration standard for other instruments for mass
• Scanning downstream of a DMA (density measurement) requires charge correction
• To extend CPMA-CPC system to analogue of SMPS system in the future will require a charge correction algorithm – including the zero / negative charge states
• CPMA-Electrometer system useful as a suspended mass concentration standard – *double-charged double-mass particles counted twice*. Zero charged particles must be corrected for *or* minimised (e.g. by using a corona charger)
Acknowledgements

• Dr Jason Olfert (University of Alberta)
• Professor Nick Collings (University of Cambridge)
• Andrew Todd (Cambustion)
References

• Measuring Particle Mass and Other Properties with the Couette Centrifugal Particle Mass Analyzer Jason Olfert & Nick Collings Cambridge Particle Meeting 2006
• The effective density and fractal dimension of particles emitted from a light-duty diesel vehicle with a diesel oxidation catalyst J.S. Olfert, J.P.R. Symonds and N. Collings Journal of Aerosol Science Volume 38, Issue 1, January 2007, Pages 69–82
• Diesel soot mass calculation in real-time with a differential mobility spectrometer Jonathan P.R. Symonds Kingsley St.J. Reavell, Jason S. Olfert, Bruce W. Campbell and Stuart J. Swift Journal of Aerosol Science Volume 38, Issue 1, January 2007, Pages 52–68
• Mass Measurements with a High-Resolution Particle Mass Classifier, Jason Olfert, Tyler Johnson, Rouzbeh Ghazi, Barnabas Wu, Nicolas Olmedo, Curt Stout , Jonathan Symonds, American Association for Aerosol Research Conference (2010)
Jon Symonds: jps@cambustion.com

www.cambustion.com/cpma
for more information including references 2005 – 2011

Booth #214 at AAAR